Gremlin and Cypher
Idetntiy Graph
360
https://reprints2.forrester.com/#/assets/2/374/RES161455/report
VENDOR PROFILES
Our analysis uncovered the following strengths and weaknesses of individual vendors.
Leaders
- Neo4j remains a popular graph data platform to support most use cases. Neo4j is a property graph database platform. Neo4j Enterprise Edition includes clustering, multidata center, advanced security features, graph analytics, visual graph discovery, and exploration. Neo4j also provides Neo4j Aura, a fully managed database-as-a-service graph data platform. An open source version is available in a GPL3-licensed open source community edition. Tens of thousands of community deployments and more than 600 customers harness connected data with Neo4j to analyze and reveal how people, processes, locations, and systems are interrelated. Neo4j has been driving a multivendor initiative to develop an ISO-standard Graph Query Language (GQL) with contributions from its Cypher language and the openCypher.org community project. Customers like Neo4j's native storage and processing of graph data models, ACID compliance and online transaction processing (OLTP), ease to proof of concept, and autoscale capabilities. Customers often use the platform for real-time recommendations, AI, graph-based search, data science, customer 360, and master data management (MDM).
- Amazon Web Services delivers a high-performance, fully managed graph database. Amazon has the most variety of databases to support the needs of developers, engineers, and architects, including a graph database. Amazon Neptune is a fully managed graph database service that supports both property graph and W3C's RDF, and it leverages Apache Tinker Pop Gremlin and SPARQL, offering organizations the ability to support a broad range of use cases. Amazon Neptune has read replicas, point-in-time recovery, continuous backup to Amazon Simple Storage Service (Amazon S3), and replication across availability zones to deliver continuous availability. Amazon Neptune supports HTTPS-encrypted client connections and also allows you to encrypt databases using keys you manage through AWS Key Management Service (KMS). Amazon Neptune is in scope for ISO (9001, 27001, 27017, and 27018), HIPAA, PCI DSS 3.2.1, SOC (1, 2, and 3), ENS High, OSPAR, and HITRUST CSF compliance regimes.( See note 1)Customers like the platform's ease of setup, fully managed offering, the fact it is part of the AWS ecosystem, its technical support, and performance. Top use cases include knowledge graphs, identity graphs, fraud graphs, data science, MDM, recommendation engines, and network security.
- TigerGraph's speed and API support are helping it gain momentum. TigerGraph is a scalable graph database that connects data silos to deliver operational analytics at scale. TigerGraph data model is based on a property graph but can also read RDF files and cover them into the property model. TigerGraph is a schema-based database; users can build graph schema models manually or use the no-code data migration tool to create graph schema automatically. TigerGraph also has a visual query builder in GraphStudio, which is a no-code tool to query the database through drag-and-drop graph patterns. The graph platform can be extended and customized by adding user-defined functions (UDFs) written in C++. TigerGraph provides full ACID compliance and strong consistency; all updates are written to the replicas immediately. Customers like TigerGraph's speed, language, ease of deployment, performance, visual tooling for graph schema/query, and support for both transactional and analytics use cases in the same instance. Top use cases include data science, knowledge graph, healthcare, customer 360, and fraud detection.
- Microsoft Azure Cosmos DB with graph enables you to build all kinds of applications. Azure Cosmos DB is Microsoft's globally distributed, multimodel database that allows users to scale compute and storage across Azure geographic regions elastically. It is a fully managed graph database that offers an elastic scale of storage and throughput, multidocument ACID transactions, automatic indexing and query, tunable consistency levels, and support for Apache TinkerPop Gremlin standards. Azure Cosmos DB provides the Gremlin API for applications that need to model, query, and traverse large graphs efficiently using Gremlin. Customers like the platform's ease of scaling, customer support, geodistribution features, autoscale capabilities, multiple-query APIs, cost-effectiveness, and fast time-to-value. They use Azure Cosmos DB for mission-critical transactional applications, data science, knowledge graph, MDM, customer 360, and social networks.
- Oracle's graph offering is a viable option, especially for Oracle customers. Oracle supports both RDF and property graph models. The RDF graph is schemaless but can be implemented with automatic (direct) mapping and custom mapping (using R2RML) from a relational schema. In contrast, the property graph is schemaless but can also be implemented using schema and tables. RDF and property graphs are available on-premises, via Oracle Autonomous Database, Exadata Cloud, Exadata cloud@customer, and on public clouds (AWS, Azure, and Oracle). Oracle offers a GraphViz native graph visualization component. Customers like Oracle's capabilities for technical support, cloud offering, PGQL, ease to start with SQL-like syntax, and performance for moderately sized deployments. Customers' top use cases for Oracle include data science, fraud detection, financial services, network monitoring, social networks, and customer 360.
Strong Performers
- Franz's AllegroGraph offers a multimodal graph data platform for knowledge graph. AllegroGraph is a horizontally distributed, semantic graph database developed by Franz. It employs semantic graph technologies that process data based on context, offering the ability to make data connections more intelligent. AllegroGraph operates schemaless and with ontologies as the schema. It provides a patented, in-memory federation function to support a horizontally distributed architecture. AllegroGraph can store JSON documents, non-RDF graphs, as well as RDF graphs. AllegroGraph supports CRUD, ACID database access, and optimizations for OLTP operations. Data and metadata can be managed using Java, Python, LISP, and HTTP interfaces, and they can be queried using SPARQL and Prolog. AllegroGraph comes with social network analysis, geospatial, temporal, and reasoning capabilities. Customers like the platform's vendor partnership, technical support, and price-to-value ratio. Top use cases include customer 360, healthcare, fraud detection, content management, knowledge graph, and MDM.
- ArangoDB offers graph within its broader multimodel capabilities. ArangoDB is an open source, native multimodel database. It supports key-value, document, and graph data models with a single database. It also offers AQL, a unified query language, and GraphQL, an open source data query and manipulation language for APIs. ArangoDB provides scalable queries when working with graph data. The platform can be deployed on-premises and in the cloud, including AWS, Google Cloud Platform, and Microsoft Azure. It combines the power of graphs with JSON documents, key-value store, and a text search engine to enable developers to access and integrate all data to support various applications. Customer references like ArangoDB's graph support, flexible data model, query language, and straightforward approach. They use the platform for transactional and operational workloads, and they like its fast time-to-value for business initiatives. Customers are using it for customer 360, knowledge graph, MDM, recommendations, engines, social network analytics, AI/ML, and identity and access management.
Contenders
- Ontotext ramps up its GraphDB features to take on the competition. Ontotext is a Bulgarian software company best known for the GraphDB semantic graph database engine (also called RDF triplestore), which is compliant with W3C standards. GraphDB comes in different versions: free, standard edition, and enterprise edition. It allows you to link diverse data and index the data for semantic search. On top of GraphDB, the broader Ontotext Platform offers text analysis that it uses to build knowledge graphs and can be used to enrich them. The platform also offers GraphQL interfaces. Ontotext products run on-premises and in the public cloud, including AWS, Azure, and Google Cloud. GraphDB has an open source plug-in API, allowing an extension to the core engine to support other engines or algorithms. It supports full consistency in the context of a single server, while users can choose between strict and eventual consistency in a cluster mode. Customers like GraphDB's performance, ease of use, technical support, ease of cluster deployment, advanced reasoning support, and connectors to Elasticsearch and Solr. The top customer use cases include knowledge graph, media and publishing, content and taxonomy management, healthcare, intelligence, configuration management in manufacturing, and data publishing.
- Dgraph Labs offers a viable platform for customers. Dgraph is a horizontally scalable and distributed GraphQL database with a graph back end. It provides ACID transactions, consistent replication, and linearizable reads. Dgraph supports GraphQL query language and responds in JSON and Protocol buffers over GRPC and HTTP. Dgraph is open source but also offers an enterprise version under a proprietary license that includes backups, advanced security offerings, cluster-to-cluster replication, and 24/7 support. Dgraph has native support for Java, JS, NodeJS, Python, Go, and C#, and the community has also built integrations with Rust, Elixir, and Dart programming languages. Dgraph customers like the solution's ACID transactions, query language, performance, ease of data modeling, open source, liberal license, technical support, and scalability. Customers' top use cases include data center/network monitoring, data science, knowledge graph, intrusion detection, MDM, and healthcare.
- Cambridge Semantics' AnzoGraph DB is a viable offering to support broad use cases. AnzoGraph DB is a massively parallel processing, native graph, OLAP data warehouse database built by Cambridge Semantics. Virtual knowledge graphs are fully supported, in which remote sources of data are accessed through dynamically generated SQL push-down queries. AnzoGraph DB also powers data engineering for machine learning. It includes over 400 functions and services for regular line-of-business analytics, including views and windowed aggregates, geospatial functions, and graph, as well as data science algorithms to support in-graph feature engineering. The company delivers products and solutions that enable IT departments and business users across life sciences, financial services, government, manufacturing, and other industries to accelerate data delivery and provide meaningful insights using graph technology. AnzoGraph DB supports both open W3C SPARQL 1.1/RDF standards and RDF* (aka RDF star) property graphs, and soon it will support OpenCypher on the same data. We did not evaluate the broader Anzo Enterprise Data Fabric Knowledge Graph platform but only the standalone AnzoGraph DB product. Customers like AnzoGraph DB's ease of ingesting and transforming different types of data into graph, its scale, its integration with structured and unstructured data, its interoperability, and the organization of the data layers to map data from the sources to the knowledge graph. Top use cases include embedded analytics that require graph algorithms, data science, knowledge graph, and MDM.
- Alibaba joins the bandwagon to support graph delivering a credible offering. Alibaba offers a broad range of infrastructure, platform, and database services, similar to Amazon, Google, and Microsoft. While Alibaba has some large and complex graph data deployments across various industries, most are limited to China. Alibaba offers a fully managed graph data platform that is a recent addition to its broad database offerings, which comprise relational and nonrelational databases. Key capabilities for Alibaba's graph data platform include support for both Gremlin and Cypher, ACID features, high availability and disaster recovery, schema-free and autoindexing, translytical capabilities, and integration with the broader ecosystem to support data ingestion, integration, and synchronization. Customer references like Alibaba's performance, ease of use, simple deployment, interface expandability, and security features. Top use cases include knowledge graph and fraud detection.
- Stardog offers good data virtualization capabilities to support graph platforms. Stardog is an enterprise knowledge graph platform that helps create a flexible, reusable data layer for answering complex queries across data silos. The Stardog platform is built on the RDF open standards, supporting RDF and labeled property graphs. Stardog can be deployed on-premises or in the public cloud, including AWS and Azure. Stardog Studio is a feature-rich integrated development environment for Stardog. Within Stardog Studio, some hubs help users write queries, explore data, visualize data, connect virtual graphs, and load data. The platform natively supports SPARQL, SWRL, SHACL, GraphSQL, SQL through business intelligence (BI)/SQL connectors, Java, JavaScript, Python, .NET, Clojure, Spring, and Groovy. While Stardog does not offer a full-featured low-code development environment, it has partnered with Zudy and metaphactory to provide this feature. Stardog customers like the platform's good variety of connectors for data virtualization, APIs and BI connectivity, ease of use, virtual graphs, and visualization capabilities. The top use cases are knowledge graph, MDM, data science, and financial services.
공급업체 프로필
우리의 분석은 개별 공급업체의 다음과 같은 강점과 약점을 발견했습니다.
리더
Neo4j는 대부분의 사용 사례를 지원하는 인기 있는 그래프 데이터 플랫폼으로 남아 있습니다. Neo4j는 속성 그래프 데이터베이스 플랫폼입니다. Neo4j Enterprise Edition에는 클러스터링, 다중 데이터 센터, 고급 보안 기능, 그래프 분석, 시각적 그래프 검색 및 탐색이 포함됩니다. Neo4j는 또한 완전히 관리되는 서비스형 데이터베이스 그래프 데이터 플랫폼인 Neo4j Aura를 제공합니다. 오픈 소스 버전은 GPL3 라이선스 오픈 소스 커뮤니티 에디션에서 사용할 수 있습니다. 수만 개의 커뮤니티 배포와 600명 이상의 고객이 Neo4j로 연결된 데이터를 활용하여 사람, 프로세스, 위치 및 시스템이 어떻게 상호 연관되어 있는지 분석하고 공개합니다. Neo4j는 Cypher 언어와 openCypher.org 커뮤니티 프로젝트의 기여로 ISO 표준 GQL(Graph Query Language)을 개발하기 위한 멀티벤더 이니셔티브를 주도해 왔습니다. 고객은 Neo4j의 기본 저장 및 그래프 데이터 모델 처리, ACID 규정 준수 및 OLTP(온라인 트랜잭션 처리), 간편한 개념 증명 및 자동 크기 조정 기능을 좋아합니다. 고객은 종종 실시간 추천, AI, 그래프 기반 검색, 데이터 과학, 고객 360도, 마스터 데이터 관리(MDM)에 플랫폼을 사용합니다.
Amazon Web Services는 고성능의 완전 관리형 그래프 데이터베이스를 제공합니다. Amazon은 그래프 데이터베이스를 포함하여 개발자, 엔지니어 및 설계자의 요구를 지원하는 가장 다양한 데이터베이스를 보유하고 있습니다. Amazon Neptune은 속성 그래프와 W3C의 RDF를 모두 지원하는 완전 관리형 그래프 데이터베이스 서비스이며 Apache Tinker Pop Gremlin 및 SPARQL을 활용하여 조직에 광범위한 사용 사례를 지원할 수 있는 기능을 제공합니다. Amazon Neptune에는 읽기 전용 복제본, 지정 시간 복구, Amazon Simple Storage Service(Amazon S3)에 대한 연속 백업, 가용성 영역 간 복제가 있어 지속적인 가용성을 제공합니다. Amazon Neptune은 HTTPS로 암호화된 클라이언트 연결을 지원하며 AWS Key Management Service(KMS)를 통해 관리하는 키를 사용하여 데이터베이스를 암호화할 수도 있습니다. Amazon Neptune은 ISO(9001, 27001, 27017 및 27018), HIPAA, PCI DSS 3.2.1, SOC(1, 2 및 3), ENS High, OSPAR 및 HITRUST CSF 규정 준수 체제의 범위에 있습니다.()고객 플랫폼의 손쉬운 설정, 완전 관리형 제품, AWS 에코시스템의 일부라는 사실, 기술 지원, 성능 등이 있습니다. 주요 사용 사례에는 지식 그래프, ID 그래프, 사기 그래프, 데이터 과학, MDM, 추천 엔진 및 네트워크 보안이 포함됩니다.
TigerGraph의 속도와 API 지원은 추진력을 얻는 데 도움이 됩니다. TigerGraph는 데이터 사일로를 연결하여 대규모 운영 분석을 제공하는 확장 가능한 그래프 데이터베이스입니다. TigerGraph 데이터 모델은 속성 그래프를 기반으로 하지만 RDF 파일을 읽고 속성 모델에 포함할 수도 있습니다. TigerGraph는 스키마 기반 데이터베이스입니다. 사용자는 그래프 스키마 모델을 수동으로 구축하거나 코드가 없는 데이터 마이그레이션 도구를 사용하여 그래프 스키마를 자동으로 생성할 수 있습니다. TigerGraph는 또한 GraphStudio에 시각적 쿼리 빌더를 가지고 있습니다. 이는 드래그 앤 드롭 그래프 패턴을 통해 데이터베이스를 쿼리하는 코드가 없는 도구입니다. 그래프 플랫폼은 C++로 작성된 사용자 정의 함수(UDF)를 추가하여 확장 및 사용자 정의할 수 있습니다. TigerGraph는 완전한 ACID 준수와 강력한 일관성을 제공합니다. 모든 업데이트는 즉시 복제본에 기록됩니다. 고객은 TigerGraph의 속도, 언어, 배포 용이성, 성능, 그래프 스키마/쿼리를 위한 시각적 도구, 동일한 인스턴스에서 트랜잭션 및 분석 사용 사례에 대한 지원을 좋아합니다. 주요 사용 사례에는 데이터 과학, 지식 그래프, 의료, 고객 360도, 사기 탐지가 포함됩니다.
그래프가 있는 Microsoft Azure Cosmos DB를 사용하면 모든 종류의 애플리케이션을 구축할 수 있습니다. Azure Cosmos DB는 사용자가 Azure 지리적 지역에서 컴퓨팅 및 스토리지를 탄력적으로 확장할 수 있도록 하는 Microsoft의 전 세계적으로 분산된 다중 모델 데이터베이스입니다. 탄력적인 스토리지 및 처리량 확장, 다중 문서 ACID 트랜잭션, 자동 인덱싱 및 쿼리, 조정 가능한 일관성 수준, Apache TinkerPop Gremlin 표준 지원을 제공하는 완전 관리형 그래프 데이터베이스입니다. Azure Cosmos DB는 Gremlin을 사용하여 대형 그래프를 효율적으로 모델링, 쿼리 및 트래버스해야 하는 애플리케이션에 Gremlin API를 제공합니다. 고객은 플랫폼의 손쉬운 확장, 고객 지원, 지리적 분포 기능, 자동 확장 기능, 다중 쿼리 API, 비용 효율성 및 빠른 가치 실현 시간을 좋아합니다. 미션 크리티컬 트랜잭션 애플리케이션, 데이터 과학, 지식 그래프, MDM, 고객 360도 및 소셜 네트워크에 Azure Cosmos DB를 사용합니다.
Oracle의 그래프 제품은 특히 Oracle 고객에게 실행 가능한 옵션입니다. Oracle은 RDF 및 속성 그래프 모델을 모두 지원합니다. RDF 그래프는 스키마가 없지만 관계형 스키마에서 자동(직접) 매핑 및 사용자 지정 매핑(R2RML 사용)으로 구현할 수 있습니다. 이와 대조적으로 속성 그래프는 스키마가 없지만 스키마와 테이블을 사용하여 구현할 수도 있습니다. RDF 및 속성 그래프는 Oracle Autonomous Database, Exadata Cloud, Exadata cloud@customer를 통해 온프레미스 및 퍼블릭 클라우드(AWS, Azure 및 Oracle)에서 사용할 수 있습니다. Oracle은 GraphViz 기본 그래프 시각화 구성 요소를 제공합니다. 고객은 Oracle의 기술 지원, 클라우드 오퍼링, PGQL 기능, SQL과 유사한 구문으로 시작하기 쉬운 기능, 적당한 규모의 배포를 위한 성능을 좋아합니다. Oracle에 대한 고객의 주요 사용 사례에는 데이터 과학, 사기 탐지, 금융 서비스, 네트워크 모니터링, 소셜 네트워크 및 고객 360이 포함됩니다.
강력한 수행자
Franz의 AllegroGraph는 지식 그래프를 위한 다중 모드 그래프 데이터 플랫폼을 제공합니다. AllegroGraph는 Franz가 개발한 수평으로 분산된 의미 그래프 데이터베이스입니다. 컨텍스트를 기반으로 데이터를 처리하는 시맨틱 그래프 기술을 사용하여 데이터 연결을 보다 지능적으로 만드는 기능을 제공합니다. AllegroGraph는 스키마 없이 온톨로지를 스키마로 사용하여 작동합니다. 수평으로 분산된 아키텍처를 지원하는 특허 받은 인메모리 연합 기능을 제공합니다. AllegroGraph는 JSON 문서, 비 RDF 그래프 및 RDF 그래프를 저장할 수 있습니다. AllegroGraph는 CRUD, ACID 데이터베이스 액세스 및 OLTP 작업에 대한 최적화를 지원합니다. 데이터 및 메타데이터는 Java, Python, LISP 및 HTTP 인터페이스를 사용하여 관리할 수 있으며 SPARQL 및 Prolog를 사용하여 쿼리할 수 있습니다. AllegroGraph는 소셜 네트워크 분석, 지리 공간, 시간 및 추론 기능과 함께 제공됩니다. 고객은 플랫폼의 공급업체 파트너십, 기술 지원 및 가격 대비 가치를 좋아합니다. 주요 사용 사례에는 고객 360, 의료, 사기 탐지, 콘텐츠 관리, 지식 그래프 및 MDM이 포함됩니다.
ArangoDB는 광범위한 다중 모델 기능 내에서 그래프를 제공합니다. ArangoDB는 오픈 소스의 기본 다중 모델 데이터베이스입니다. 단일 데이터베이스로 키-값, 문서 및 그래프 데이터 모델을 지원합니다. 또한 통합 쿼리 언어인 AQL과 API용 오픈 소스 데이터 쿼리 및 조작 언어인 GraphQL을 제공합니다. ArangoDB는 그래프 데이터로 작업할 때 확장 가능한 쿼리를 제공합니다. 이 플랫폼은 AWS, Google Cloud Platform 및 Microsoft Azure를 비롯한 온프레미스 및 클라우드에 배포할 수 있습니다. 그래프의 힘을 JSON 문서, 키-값 저장소 및 텍스트 검색 엔진과 결합하여 개발자가 다양한 애플리케이션을 지원하기 위해 모든 데이터에 액세스하고 통합할 수 있도록 합니다. ArangoDB의 그래프 지원, 유연한 데이터 모델, 쿼리 언어 및 간단한 접근 방식과 같은 고객 참조. 그들은 트랜잭션 및 운영 워크로드에 플랫폼을 사용하고 비즈니스 이니셔티브에 대한 빠른 가치 실현 시간을 좋아합니다. 고객은 이를 고객 360, 지식 그래프, MDM, 추천, 엔진, 소셜 네트워크 분석, AI/ML, ID 및 액세스 관리에 사용하고 있습니다.
경쟁자
Ontotext는 경쟁에 맞서기 위해 GraphDB 기능을 강화합니다. Ontotext는 W3C 표준을 준수하는 GraphDB 시맨틱 그래프 데이터베이스 엔진(RDF triplestore라고도 함)으로 가장 잘 알려진 불가리아 소프트웨어 회사입니다. GraphDB는 무료, 스탠다드 에디션, 엔터프라이즈 에디션 등 다양한 버전으로 제공됩니다. 다양한 데이터를 연결하고 의미 검색을 위해 데이터를 인덱싱할 수 있습니다. GraphDB 위에 더 광범위한 Ontotext Platform은 지식 그래프를 구축하는 데 사용하고 이를 강화하는 데 사용할 수 있는 텍스트 분석을 제공합니다. 플랫폼은 GraphQL 인터페이스도 제공합니다. Ontotext 제품은 AWS, Azure, Google Cloud를 포함한 퍼블릭 클라우드와 온프레미스에서 실행됩니다. GraphDB에는 오픈 소스 플러그인 API가 있어 코어 엔진을 확장하여 다른 엔진이나 알고리즘을 지원할 수 있습니다. 단일 서버의 컨텍스트에서 완전한 일관성을 지원하는 반면 사용자는 클러스터 모드에서 엄격한 일관성과 최종 일관성 중에서 선택할 수 있습니다. 고객은 GraphDB의 성능, 사용 용이성, 기술 지원, 클러스터 배포 용이성, 고급 추론 지원, Elasticsearch 및 Solr에 대한 커넥터를 좋아합니다. 주요 고객 사용 사례에는 지식 그래프, 미디어 및 게시, 콘텐츠 및 분류 관리, 의료, 인텔리전스, 제조의 구성 관리, 데이터 게시가 포함됩니다.
Dgraph Labs는 고객에게 실행 가능한 플랫폼을 제공합니다. Dgraph는 그래프 백엔드가 있는 수평 확장 및 분산 GraphQL 데이터베이스입니다. ACID 트랜잭션, 일관된 복제 및 선형화 가능한 읽기를 제공합니다. Dgraph는 GraphQL 쿼리 언어를 지원하고 GRPC 및 HTTP를 통해 JSON 및 프로토콜 버퍼에 응답합니다. Dgraph는 오픈 소스이지만 백업, 고급 보안 제품, 클러스터 간 복제 및 연중무휴 지원을 포함하는 독점 라이선스에 따라 엔터프라이즈 버전도 제공합니다. Dgraph는 Java, JS, NodeJS, Python, Go 및 C#에 대한 기본 지원을 제공하며 커뮤니티는 또한 Rust, Elixir 및 Dart 프로그래밍 언어와의 통합을 구축했습니다. Dgraph 고객은 솔루션의 ACID 트랜잭션, 쿼리 언어, 성능, 데이터 모델링의 용이성, 오픈 소스, 자유 라이선스, 기술 지원 및 확장성을 좋아합니다. 고객의 주요 사용 사례에는 데이터 센터/네트워크 모니터링, 데이터 과학, 지식 그래프, 침입 탐지, MDM 및 의료가 포함됩니다.
Cambridge Semantics의 AnzoGraph DB는 광범위한 사용 사례를 지원하는 실행 가능한 제품입니다. AnzoGraph DB는 Cambridge Semantics에서 구축한 대규모 병렬 처리, 기본 그래프, OLAP 데이터 웨어하우스 데이터베이스입니다. 동적으로 생성된 SQL 푸시다운 쿼리를 통해 원격 데이터 소스에 액세스하는 가상 지식 그래프가 완벽하게 지원됩니다. AnzoGraph DB는 또한 머신 러닝을 위한 데이터 엔지니어링을 지원합니다. 여기에는 보기 및 창 집계, 지리 공간 기능, 그래프를 비롯하여 그래프 내 피쳐 엔지니어링을 지원하는 데이터 과학 알고리즘을 포함하여 정기적인 LOB(기간 업무) 분석을 위한 400개 이상의 함수 및 서비스가 포함됩니다. 이 회사는 생명 과학, 금융 서비스, 정부, 제조 및 기타 산업 전반의 IT 부서와 비즈니스 사용자가 그래프 기술을 사용하여 데이터 제공을 가속화하고 의미 있는 통찰력을 제공할 수 있도록 하는 제품과 솔루션을 제공합니다. AnzoGraph DB는 개방형 W3C SPARQL 1.1/RDF 표준과 RDF*(RDF 스타라고도 함) 속성 그래프를 모두 지원하며 곧 동일한 데이터에서 OpenCypher를 지원할 예정입니다. 우리는 더 광범위한 Anzo Enterprise Data Fabric Knowledge Graph 플랫폼이 아니라 독립 실행형 AnzoGraph DB 제품만을 평가했습니다. 고객은 AnzoGraph DB의 다양한 유형의 데이터 수집 및 그래프로의 변환, 규모, 정형 및 비정형 데이터와의 통합, 상호 운용성, 데이터를 소스에서 지식 그래프로 매핑하기 위한 데이터 계층 구성을 좋아합니다. 주요 사용 사례에는 그래프 알고리즘, 데이터 과학, 지식 그래프 및 MDM이 필요한 임베디드 분석이 포함됩니다.
Alibaba는 신뢰할 수 있는 제품을 제공하는 그래프를 지원하기 위해 대세에 합류했습니다. Alibaba는 Amazon, Google 및 Microsoft와 유사한 광범위한 인프라, 플랫폼 및 데이터베이스 서비스를 제공합니다. Alibaba는 다양한 산업 전반에 걸쳐 크고 복잡한 그래프 데이터를 배포하고 있지만 대부분은 중국에 국한되어 있습니다. Alibaba는 관계형 및 비관계형 데이터베이스로 구성된 광범위한 데이터베이스 제품에 최근 추가된 완전 관리형 그래프 데이터 플랫폼을 제공합니다. Alibaba 그래프 데이터 플랫폼의 주요 기능에는 Gremlin 및 Cypher 모두 지원, ACID 기능, 고가용성 및 재해 복구, 스키마 프리 및 자동 인덱싱, 변환 기능, 데이터 수집, 통합 및 동기화를 지원하기 위한 광범위한 에코시스템과의 통합이 포함됩니다. Alibaba의 성능, 사용 용이성, 간단한 배포, 인터페이스 확장성 및 보안 기능과 같은 고객 참조. 주요 사용 사례에는 지식 그래프 및 사기 탐지가 포함됩니다.
Stardog은 그래프 플랫폼을 지원하는 우수한 데이터 가상화 기능을 제공합니다. Stardog은 데이터 사일로에서 복잡한 쿼리에 응답하기 위해 유연하고 재사용 가능한 데이터 계층을 생성하는 데 도움이 되는 엔터프라이즈 지식 그래프 플랫폼입니다. Stardog 플랫폼은 RDF 및 레이블이 지정된 속성 그래프를 지원하는 RDF 개방형 표준을 기반으로 합니다. Stardog은 온프레미스 또는 AWS 및 Azure를 포함한 퍼블릭 클라우드에 배포할 수 있습니다. Stardog Studio는 Stardog을 위한 기능이 풍부한 통합 개발 환경입니다. Stardog Studio 내에서 일부 허브는 사용자가 쿼리를 작성하고, 데이터를 탐색하고, 데이터를 시각화하고, 가상 그래프를 연결하고, 데이터를 로드하는 데 도움이 됩니다. 플랫폼은 기본적으로 비즈니스 인텔리전스(BI)/SQL 커넥터, Java, JavaScript, Python, .NET, Clojure, Spring 및 Groovy를 통해 SPARQL, SWRL, SHACL, GraphSQL, SQL을 지원합니다. Stardog은 완전한 기능을 갖춘 로우 코드 개발 환경을 제공하지 않지만 이 기능을 제공하기 위해 Zudy 및 metaphactory와 제휴했습니다. Stardog 고객은 데이터 가상화, API 및 BI 연결, 사용 용이성, 가상 그래프 및 시각화 기능을 위한 플랫폼의 다양한 커넥터를 좋아합니다. 주요 사용 사례는 지식 그래프, MDM, 데이터 과학 및 금융 서비스입니다.