persp> # (3) Visualizing a simple DEM model
persp>
persp> z <- 2 * volcano # Exaggerate the relief
persp> x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
persp> y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
persp> ## Don't draw the grid lines : border = NA
persp> par(bg = "slategray")
persp> persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,
persp+ ltheta = -120, shade = 0.75, border = NA, box = FALSE)
페이지 변경을 확인하기 위해 기다리는 중...
persp> # (4) Surface colours corresponding to z-values
persp>
persp> par(bg = "white")
persp> x <- seq(-1.95, 1.95, length = 30)
persp> y <- seq(-1.95, 1.95, length = 35)
persp> z <- outer(x, y, function(a, b) a*b^2)
persp> nrz <- nrow(z)
persp> ncz <- ncol(z)
persp> # Create a function interpolating colors in the range of specified colors
persp> jet.colors <- colorRampPalette( c("blue", "green") )
persp> # Generate the desired number of colors from this palette
persp> nbcol <- 100
persp> color <- jet.colors(nbcol)
persp> # Compute the z-value at the facet centres
persp> zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
persp> # Recode facet z-values into color indices
persp> facetcol <- cut(zfacet, nbcol)
persp> persp(x, y, z, col = color[facetcol], phi = 30, theta = -30)
페이지 변경을 확인하기 위해 기다리는 중...
persp> par(op)
>
clear
clr
example(persp)
apply(m, dimcode, f, fargs)
y <- matrix( c(1,2), c(5,7,9))
y <- matrix( c(1,2), c(7,9))
y <- matrix( c(1,2), c(7,9))
j <- list(name="cho", salary="5800", union=T)
j
j$name
z <- vector(mode="list")
z
z[["abc"]]<3
z
j
x=-10:10
y=1/(1+exp(-x))
plot(x,y, type=T)
x
y
plot(x)
plot(y)
plot(x,y)
y-1/(1+exp(-2.4426*1-0.5445*2 +15.2034))
plot(y)
y=1/(1+exp(-2.4426*1-0.5445*2 +15.2034))
plot(y)
library(tcltk)
demo(tkdensity)
1+`1
;
1+1
exit;
:
;
;
1+1
cat (1-1, 1+1, 3, 5, 9*4)
"Arr, matey"
c <- "Arr, matey"
c
cat(c, x)
cat(c, "x")
tkpack
frame 2
frame2
demo(tkdensity)
T=TRUE
;
T==TRUE
;
T == TRUE ;
T == FALSE ;
F = FALSE;
winners <- read.delim(pipe('pbpaste'))
winners <- read.delim(pipe('pbpaste'))
winners <- read.delim(pipe('pbpaste'))
source('~/.active-rstudio-document')
view(winners)
View(winners)
View('winners')
wins <- read.delim('clipboard')
View(wins)
winx <- read.delim('clipboard')
View(winx)
seq(from-1, to=999, by=7)
seq(from=1, to=999, by=7)
re(1,100)
rep(1,100)
c(1,2,3,3,4,6)
c(seq(from=1, to=99, by=20), rep(1,100))
matrix(1:8, ncol=4)
matrix(1:128, ncol=4)
matrix(1:128, ncol=8)
matrix(1:128, ncol=8, byrow=TRUE)
matrix(1:128, ncol=10, byrow=TRUE)
matrix(1:150, ncol=10, byrow=TRUE)
matrix(1:150, ncol=10, byrow=TRUE)
warnings()
getwd()
install.packages("ade4")
library(ade4)
data(olympic)
print(data(olympic))
attach(olympic)
Turtles=read.table("D:/download/RRR/PaintedTurtles.txt",header=T)
Turtles
turtlem=Turtles[,2:4]
trutlem
turtlem
save(Turtles, file="Turtles.save")
save(turtlem, file="trutlem.save")
apply(turtlem,2,summary)
savehistory("~/r0002.Rhistory")
round(cov(trutlesc),2)
round(cor(turtlem),1)
round(cor(turtlem),2)
trutlesc=scale(turtlem)
round(cov(turtlem),2)
turtlesc=scale(turtlem)
round(cov(turtlesc),2)
require(ade4)
load("turtlem.save")
load("trutlem.save")
pca.turtles = dudi.pca(turtlem, scannf=F, nf=2)
print(pca.turtles)
scatter(pca.turtles)
pca.turtles
data <- read.table("D:/download/RRR/110707-ramen-data.txt", header=T)
data <- read.table("D:/download/RRR/110707-ramen-data.txt", header=T)
data <- read.table("D:/download/RRR/110707-ramen-data.txt", header=T)
data <- read.table("D:/download/RRR/110707-ramen-data.txt", header=T)
data <- read.table("D:/download/RRR/110707-ramen-data.txt", header=T)
data
mean(data)
getwd()
setwd("D:\\jacob\\R_working_dir\\shiny\\06_ShinyDash_sample")
getwd()
dir
dir()
library(shiny
)
runApp("D:\\jacob\\R_working_dir\\shiny\\06_ShinyDash_sample")
install.packages("shinyDash")
library(shinyDash)
version()
version
runApp("06_ShinyDash_sample")
runApp("D:\\jacob\\R_working_dir\\shiny\\06_ShinyDash_sample")
runApp("D:\\jacob\\R_working_dir\\shiny\\04_Dataset_exploration_tool")
diamonds
diamonds[1]
diamonds[,10]
diamonds[1,10]
diamonds
diamonds[3]
diamonds[,3]
diamonds[1,]
diamonds[c(1:3),]
diamonds[1:3,]
diamonds[1:10,]
diamonds[10,]
diamonds[~10,]
diamonds[-10,]
diamonds[10,]
diamonds[1:10,]
runApp("D:\\jacob\\R_working_dir\\shiny\\04_Dataset_exploration_tool")
runApp("D:\\jacob\\R_working_dir\\shiny\\04_Dataset_exploration_tool")
diamonds
dataset <- diamonds
dataset
dataset[1:10,]
dataset[1:100,]
nrow(dataset)
ncol(dataset)
names(dataset)
names(dataset)[[2]]
names(dataset)[1
]
names(dataset)[1:2, ]
names(dataset)[1:2 ]
names(dataset)[1:5]
dataset[1:10,]
names(dataset)
names(dataset)[1]
names(dataset)[[1]
]
names(dataset)[2]
names(dataset)[[2]]
names(dataset)[[2],]
names(dataset)[[2],1]
names(dataset)[[2],[1]
c('NONE', names(dataset))
names(dataset)
c(None='.', names(dataset))
plotOutput('plot')
matrix(1:2, 3,4)
matrix(1:62, 3,4)
matrix(1:6, 3,4)
n = c( 2,3,5)
s = c ( "aa", "bb", "cc")
b = c(TRUE, FALSE, TRUE)
df = data.frame(n,s,b)
n
s
b
df
names(df)
mtcars
mtcars[1:3, ]
mtcars[1,2]
mtcars["Datsun 710", "cyl"]
mtcars["Ferrari Dino"]
mtcars["Ferrari Dino",]
mtcars[("Ferrari Dino", "Datsun 710"),]
mtcars[c("Ferrari Dino", "Datsun 710"),]
c(nrow(mtcars), ncol(mtcars)
;
c(nrow(mtcars), ncol(mtcars))
help(mtcars)
require(graphics)
pairs(mtcars, main = "mtcars data")
coplot(mpg ~ disp | as.factor(cyl), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ hp | as.factor(cyl), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ disp | as.factor(cyl), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ disp | as.factor(gear), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ disp | as.factor(qsec), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ cyl | as.factor(qsec), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ disp | as.factor(am), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ wt | as.factor(), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ wt | as.factor(mpg), data=mtcars, panel=panel.smooth, rows=1)
coplot(mpg ~ wt | as.factor(cyl), data=mtcars, panel=panel.smooth, rows=1)
# mpg ~ wt 의 관계를 cyl 값 별로 그려 보여줌
# as.factor의 값은 distinct 값이 현저히 낮은 경우 3 ~ 5 개정도가 적당할 듯
savehistory("D:/jacob/R_working_dir/20140129_script.Rhistory")
head(mtcars)
head(USArrests)
mtcars[[9]]
mtcars
names.mtcars[[9]]
mtcars[[9]].names
mtcars[[9]].names()
mtcars[[am]]
mtcars[["am"]]
mtcars[["wt"]]
mtcasr$wt
mtcars$wt
mtcars$c("wt", "am"
)
mtcars$c("wt", "am")
mtcars$wt
mtcars$wt - mtcars$am
mtcars$wt - mtcars$mpg
mtcars$mpg - mtcars$wt
head(mtcars)
mtcars[[6]]
mtcars[[wt]]
mtcars[["wt"]]
mtcars$wt
mtcars[,"am"]
head(mtcars)
mtcars[1]
mtcars[c("mpg", "hp")]
mtcars[24,]
mtcars[c(1,2,3,14,27),]
mtcars[c("Datsun 710", "Camaro Z28"),]
mtcars$am == 0
L = mtcars$am == 0
L
mtcars[L,]
mtcars[mtcars$am == 0, ]
mtcars[mtcars$wt >= 3, ]
mtcars[mtcars$wt >= 3 and mtcars$wt <5, ]
mtcars[(mtcars$wt >= 3, mtcars$wt <5), ]
mtcars[(mtcars$wt >= 3 and mtcars$wt <5), ]
mtcars[(mtcars$wt >= 3 | mtcars$wt <5), ]
mtcars[(mtcars$wt >= 3 & mtcars$wt <5), ]
mtcars[(mtcars$wt >= 3 && mtcars$wt <5), ]
mtcars[(mtcars$wt >= 3 & mtcars$wt <5), ]
mtcars[(mtcars$wt >= 3 & mtcars$wt <5) & mtcars$mpg > 18, ]
savehistory("D:/jacob/R_working_dir/20140129_script.Rhistory")
'Data Analytics' 카테고리의 다른 글
http://www.r-tutor.com/ (0) | 2014.01.29 |
---|---|
shinyUI(pageWithSidebar (0) | 2014.01.29 |
비쥬얼라이제이션 스터디 (0) | 2014.01.28 |
matrix in R (0) | 2014.01.27 |
http://cafe.naver.com/datageeks (0) | 2014.01.27 |